Hooks allow a plugin to define custom behavior for lightningd without having to modify the Core Lightning source code itself. A plugin declares that it'd like to be consulted on what to do next for certain events in the daemon. A hook can then decide how lightningd should
react to the given event.

When hooks are registered, they can optionally specify "before" and "after" arrays of plugin names, which control what order they will be called in. If a plugin name is unknown, it is ignored, otherwise if the hook calls cannot be ordered to satisfy the specifications of all plugin hooks, the plugin registration will fail.

The call semantics of the hooks, i.e., when and how hooks are called, depend on the hook type. Most hooks are currently set to single-mode. In this mode only a single plugin can register the hook, and that plugin will get called for each event of that type. If a second plugin attempts to register the hook it gets killed and a corresponding log entry will be added to the logs.

In chain-mode multiple plugins can register for the hook type and they are called in any order they are loaded (i.e. cmdline order first, configuration order file second: though note that the order of plugin directories is implementation-dependent), overridden only by before and after requirements the plugin's hook registrations specify. Each plugin can then handle the event or defer by returning a continue result like the following:

{
  "result": "continue"
}

The remainder of the response is ignored and if there are any more plugins that have registered the hook the next one gets called. If there are no more plugins then the internal handling is resumed as if no hook had been called. Any other result returned by a plugin is considered an exit from the chain. Upon exit no more plugin hooks are called for the current event, and
the result is executed. Unless otherwise stated all hooks are single-mode.

Hooks and notifications are very similar, however there are a few key differences:

  • Notifications are asynchronous, i.e., lightningd will send the notifications but not wait for the plugin to process them. Hooks on the other hand are synchronous, lightningd cannot finish processing the event until the plugin has returned.
  • Any number of plugins can subscribe to a notification topic and get notified in parallel, however only one plugin may register for single-mode hook types, and in all cases only one plugin may return a non-continue response. This avoids having multiple contradictory responses.

Hooks are considered to be an advanced feature due to the fact that lightningd relies on the plugin to tell it what to do next. Use them carefully, and make sure your plugins always return a valid response to any hook invocation.

As a convention, for all hooks, returning the object { "result" : "continue" } results in lightningd behaving exactly as if no plugin is registered on the hook.

peer_connected

This hook is called whenever a peer has connected and successfully completed the cryptographic handshake. The parameters have the following structure:

{
  "peer": {
    "id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
	"direction": "in",
    "addr": "34.239.230.56:9735",
    "features": ""
  }
}

The hook is sparse on information, since the plugin can use the JSON-RPC listpeers command to get additional details should they be required. direction is either "in" or "out". The addr field shows the address that we are connected to ourselves, not the gossiped list of known addresses. In particular this means that the port for incoming connections is an ephemeral port, that may not be available for reconnections.

The returned result must contain a result member which is either the string disconnect or continue. If disconnect and there's a member error_message, that member is sent to the peer before disconnection.

Note that peer_connected is a chained hook. The first plugin that decides to disconnect with or without an error_message will lead to the subsequent plugins not being called anymore.

recover

This hook is called whenever the node is started using the --recovery flag. So basically whenever a user wants to recover their node with a codex32 secret, they can use --recover= to use that secret as their HSM Secret.

The payload consists of the following information:

{
	"codex32": "cl10leetsllhdmn9m42vcsamx24zrxgs3qrl7ahwvhw4fnzrhve25gvezzyqqjdsjnzedu43ns"
}

This hook is intended to be used for recovering the node and funds by connecting to some known peers who keep your peer storage backups with them.

commitment_revocation

This hook is called whenever a channel state is updated, and the old state was revoked. State updates in Lightning consist of the following steps:

  1. Proposal of a new state commitment in the form of a commitment transaction
  2. Exchange of signatures for the agreed upon commitment transaction
  3. Verification that the signatures match the commitment transaction
  4. Exchange of revocation secrets that could be used to penalize an eventual misbehaving party

The commitment_revocation hook is used to inform the plugin about the state transition being completed, and deliver the penalty transaction. The penalty transaction could then be sent to a watchtower that automaticaly reacts in case one party attempts to settle using a revoked commitment.

The payload consists of the following information:

{
	"commitment_txid": "58eea2cf538cfed79f4d6b809b920b40bb6b35962c4bb4cc81f5550a7728ab05",
	"penalty_tx": "02000000000101...ac00000000",
	"channel_id": "fb16398de93e8690c665873715ef590c038dfac5dd6c49a9d4b61dccfcedc2fb",
	"commitnum": 21
}

Notice that the commitment_txid could also be extracted from the sole input of the penalty_tx, however it is enclosed so plugins don't have to include the logic to parse transactions.

Not included are the htlc_success and htlc_failure transactions that may also be spending commitment_tx outputs. This is because these transactions are much more dynamic and have a predictable timeout, allowing wallets to ensure a quick checkin when the CLTV of the HTLC is about to expire.

The commitment_revocation hook is a chained hook, i.e., multiple plugins can register it, and they will be called in the order they were registered in. Plugins should always return {"result": "continue"}, otherwise subsequent hook subscribers would not get called.

db_write

This hook is called whenever a change is about to be committed to the database, if you are using a SQLITE3 database (the default).
This hook will be useless (the "writes" field will always be empty) if you are using a PostgreSQL database.

It is currently extremely restricted:

  1. a plugin registering for this hook should not perform anything that may cause a db operation in response (pretty much, anything but logging).
  2. a plugin registering for this hook should not register for other hooks or commands, as these may become intermingled and break rule #1.
  3. the hook will be called before your plugin is initialized!

This hook, unlike all the other hooks, is also strongly synchronous: lightningd will stop almost all the other processing until this hook responds.

{
  "data_version": 42,
  "writes": [
    "PRAGMA foreign_keys = ON"
  ]
}

This hook is intended for creating continuous backups. The intent is that your backup plugin maintains three pieces of information (possibly in separate files):

  1. a snapshot of the database
  2. a log of database queries that will bring that snapshot up-to-date
  3. the previous data_version

data_version is an unsigned 32-bit number that will always increment by 1 each time db_write is called. Note that this will wrap around on the limit of 32-bit numbers.

writes is an array of strings, each string being a database query that modifies the database.
If the data_version above is validated correctly, then you can simply append this to the log of database queries.

Your plugin MUST validate the data_version. It MUST keep track of the previous data_version it got, and:

  1. If the new data_version is exactly one higher than the previous, then this is the ideal case and nothing bad happened and we should save this and continue.
  2. If the new data_version is exactly the same value as the previous, then the previous set of queries was not committed.
    Your plugin MAY overwrite the previous set of queries with the current set, or it MAY overwrite its entire backup with a new snapshot of the database and the current writes
    array (treating this case as if data_version were two or more higher than the previous).
  3. If the new data_version is less than the previous, your plugin MUST halt and catch fire, and have the operator inspect what exactly happened here.
  4. Otherwise, some queries were lost and your plugin SHOULD recover by creating a new snapshot of the database: copy the database file, back up the given writes array, then delete (or atomically rename if in a POSIX filesystem) the previous backups of the database and SQL statements, or you MAY fail the hook to abort lightningd.

The "rolling up" of the database could be done periodically as well if the log of SQL statements has grown large.

Any response other than {"result": "continue"} will cause lightningd to error without
committing to the database!
This is the expected way to halt and catch fire.

db_write is a parallel-chained hook, i.e., multiple plugins can register it, and all of them will be invoked simultaneously without regard for order of registration.
The hook is considered handled if all registered plugins return {"result": "continue"}.
If any plugin returns anything else, lightningd will error without committing to the database.

invoice_payment

This hook is called whenever a valid payment for an unpaid invoice has arrived.

{
  "payment": {
    "label": "unique-label-for-invoice",
    "preimage": "0000000000000000000000000000000000000000000000000000000000000000",
    "msat": 10000
  }
}

Before version 23.11 the msat field was a string with msat-suffix, e.g: "10000msat".

The hook is deliberately sparse, since the plugin can use the JSON-RPC listinvoices command to get additional details about this invoice. It can return a failure_message field as defined for final nodes in BOLT 4, a result field with the string
reject to fail it with incorrect_or_unknown_payment_details, or a result field with the string continue to accept the payment.

openchannel

This hook is called whenever a remote peer tries to fund a channel to us using the v1 protocol, and it has passed basic sanity checks:

{
  "openchannel": {
    "id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
    "funding_msat": 100000000,
    "push_msat": 0,
    "dust_limit_msat": 546000,
    "max_htlc_value_in_flight_msat": 18446744073709551615,
    "channel_reserve_msat": 1000000,
    "htlc_minimum_msat": 0,
    "feerate_per_kw": 7500,
    "to_self_delay": 5,
    "max_accepted_htlcs": 483,
    "channel_flags": 1
  }
}

There may be additional fields, including shutdown_scriptpubkey and a hex-string. You can see the definitions of these fields in BOLT 2's description of the open_channel message.

The returned result must contain a result member which is either the string reject or continue. If reject and there's a member error_message, that member is sent to the peer before disconnection.

For a 'continue'd result, you can also include a close_to address, which will be used as the output address for a mutual close transaction.

e.g.

{
    "result": "continue",
    "close_to": "bc1qlq8srqnz64wgklmqvurv7qnr4rvtq2u96hhfg2",
	"mindepth": 0,
	"reserve": "1234sat"
}

Note that close_to must be a valid address for the current chain, an invalid address will cause the node to exit with an error.

  • mindepth is the number of confirmations to require before making the channel usable. Notice that setting this to 0 (zeroconf) or some other low value might expose you to double-spending issues, so only lower this value from the default if you trust the peer not to
    double-spend, or you reject incoming payments, including forwards, until the funding is confirmed.

  • reserve is an absolute value for the amount in the channel that the peer must keep on their side. This ensures that they always have something to lose, so only lower this below the 1% of funding amount if you trust the peer. The protocol requires this to be larger than the dust limit, hence it will be adjusted to be the dust limit if the specified value is below.

Note that openchannel is a chained hook. Therefore close_to, reserve will only be
evaluated for the first plugin that sets it. If more than one plugin tries to set a close_to address an error will be logged.

openchannel2

This hook is called whenever a remote peer tries to fund a channel to us using the v2 protocol, and it has passed basic sanity checks:

{
  "openchannel2": {
    "id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
    "channel_id": "252d1b0a1e57895e84137f28cf19ab2c35847e284c112fefdecc7afeaa5c1de7",
    "their_funding_msat": 100000000,
    "dust_limit_msat": 546000,
    "max_htlc_value_in_flight_msat": 18446744073709551615,
    "htlc_minimum_msat": 0,
    "funding_feerate_per_kw": 7500,
    "commitment_feerate_per_kw": 7500,
    "feerate_our_max": 10000,
    "feerate_our_min": 253,
    "to_self_delay": 5,
    "max_accepted_htlcs": 483,
    "channel_flags": 1,
    "locktime": 2453,
    "channel_max_msat": 16777215000,
    "requested_lease_msat": 100000000,
    "lease_blockheight_start": 683990,
    "node_blockheight": 683990
  }
}

There may be additional fields, such as shutdown_scriptpubkey. You can see the definitions of these fields in BOLT 2's description of the open_channel message.

requested_lease_msat, lease_blockheight_start, and node_blockheight are
only present if the opening peer has requested a funding lease, per option_will_fund.

The returned result must contain a result member which is either the string reject or continue. If reject and there's a member error_message, that member is sent to the peer before disconnection.

For a 'continue'd result, you can also include a close_to address, which will be used as the output address for a mutual close transaction; you can include a psbt and an our_funding_msat to contribute funds, inputs and outputs to this channel open.

Note that, like openchannel_init RPC call, the our_funding_msat amount must NOT be accounted for in any supplied output. Change, however, should be included and should use the funding_feerate_per_kw to calculate.

See plugins/funder.c for an example of how to use this hook to contribute funds to a channel open.

e.g.

{
    "result": "continue",
    "close_to": "bc1qlq8srqnz64wgklmqvurv7qnr4rvtq2u96hhfg2",
    "psbt": "cHNidP8BADMCAAAAAQ+yBipSVZrrw28Oed52hTw3N7t0HbIyZhFdcZRH3+61AQAAAAD9////AGYAAAAAAQDfAgAAAAABARtaSZufCbC+P+/G23XVaQ8mDwZQFW1vlCsCYhLbmVrpAAAAAAD+////AvJs5ykBAAAAFgAUT6ORgb3CgFsbwSOzNLzF7jQS5s+AhB4AAAAAABepFNi369DMyAJmqX2agouvGHcDKsZkhwJHMEQCIHELIyqrqlwRjyzquEPvqiorzL2hrvdu9EBxsqppeIKiAiBykC6De/PDElnqWw49y2vTqauSJIVBgGtSc+vq5BQd+gEhAg0f8WITWvA8o4grxNKfgdrNDncqreMLeRFiteUlne+GZQAAAAEBIICEHgAAAAAAF6kU2Lfr0MzIAmapfZqCi68YdwMqxmSHAQQWABQB+tkKvNZml+JZIWRyLeSpXr7hZQz8CWxpZ2h0bmluZwEIexhVcpJl8ugM/AlsaWdodG5pbmcCAgABAA==",
    "our_funding_msat": 39999000
}

Note that close_to must be a valid address for the current chain, an invalid address will cause the node to exit with an error.

Note that openchannel is a chained hook. Therefore close_to will only be evaluated for the first plugin that sets it. If more than one plugin tries to set a close_to address an error will be logged.

openchannel2_changed

This hook is called when we received updates to the funding transaction from the peer.

{
	"openchannel2_changed": {
		"channel_id": "252d1b0a1e57895e841...",
		"psbt": "cHNidP8BADMCAAAAAQ+yBipSVZr..."
	}
}

In return, we expect a result indicated to continue and an updated psbt.
If we have no updates to contribute, return the passed in PSBT. Once no changes to the PSBT are made on either side, the transaction construction negotiation will end and commitment transactions will be exchanged.

Expected Return

{
	"result": "continue",
	"psbt": "cHNidP8BADMCAAAAAQ+yBipSVZr..."
}

See plugins/funder.c for an example of how to use this hook to continue a v2 channel open.

openchannel2_sign

This hook is called after we've gotten the commitment transactions for a channel open. It expects psbt to be returned which contains signatures for our inputs to the funding transaction.

{
	"openchannel2_sign": {
		"channel_id": "252d1b0a1e57895e841...",
		"psbt": "cHNidP8BADMCAAAAAQ+yBipSVZr..."
	}
}

In return, we expect a result indicated to continue and an partially signed psbt.

If we have no inputs to sign, return the passed in PSBT. Once we have also received the signatures from the peer, the funding transaction will be broadcast.

Expected Return

{
	"result": "continue",
	"psbt": "cHNidP8BADMCAAAAAQ+yBipSVZr..."
}

See plugins/funder.c for an example of how to use this hook to sign a funding transaction.

rbf_channel

Similar to openchannel2, the rbf_channel hook is called when a peer requests an RBF for a channel funding transaction.

{
  "rbf_channel": {
    "id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
    "channel_id": "252d1b0a1e57895e84137f28cf19ab2c35847e284c112fefdecc7afeaa5c1de7",
    "their_last_funding_msat": 100000000,
    "their_funding_msat": 100000000,
    "our_last_funding_msat": 100000000,
    "funding_feerate_per_kw": 7500,
    "feerate_our_max": 10000,
    "feerate_our_min": 253,
    "channel_max_msat": 16777215000,
    "locktime": 2453,
    "requested_lease_msat": 100000000
  }
}

The returned result must contain a result member which is either the string reject or continue. If reject and there's a member error_message, that member is sent to the peer before disconnection.

For a 'continue'd result, you can include a psbt and an our_funding_msat to contribute funds, inputs and outputs to this channel open.

Note that, like the openchannel_init RPC call, the our_funding_msat amount must NOT be accounted for in any supplied output. Change, however, should be included and should use the funding_feerate_per_kw to calculate.

Return

{
    "result": "continue",
    "psbt": "cHNidP8BADMCAAAAAQ+yBipSVZrrw28Oed52hTw3N7t0HbIyZhFdcZRH3+61AQAAAAD9////AGYAAAAAAQDfAgAAAAABARtaSZufCbC+P+/G23XVaQ8mDwZQFW1vlCsCYhLbmVrpAAAAAAD+////AvJs5ykBAAAAFgAUT6ORgb3CgFsbwSOzNLzF7jQS5s+AhB4AAAAAABepFNi369DMyAJmqX2agouvGHcDKsZkhwJHMEQCIHELIyqrqlwRjyzquEPvqiorzL2hrvdu9EBxsqppeIKiAiBykC6De/PDElnqWw49y2vTqauSJIVBgGtSc+vq5BQd+gEhAg0f8WITWvA8o4grxNKfgdrNDncqreMLeRFiteUlne+GZQAAAAEBIICEHgAAAAAAF6kU2Lfr0MzIAmapfZqCi68YdwMqxmSHAQQWABQB+tkKvNZml+JZIWRyLeSpXr7hZQz8CWxpZ2h0bmluZwEIexhVcpJl8ugM/AlsaWdodG5pbmcCAgABAA==",
    "our_funding_msat": 39999000
}

htlc_accepted

The htlc_accepted hook is called whenever an incoming HTLC is accepted, and its result determines how lightningd should treat that HTLC.

The payload of the hook call has the following format:

{
  "onion": {
    "payload": "",
    "short_channel_id": "1x2x3",
    "forward_msat": 42,
    "outgoing_cltv_value": 500014,
    "shared_secret": "0000000000000000000000000000000000000000000000000000000000000000",
    "next_onion": "[1365bytes of serialized onion]"
  },
  "htlc": {
    "short_channel_id": "4x5x6",
    "id": 27,
    "amount_msat": 43,
    "cltv_expiry": 500028,
    "cltv_expiry_relative": 10,
    "payment_hash": "0000000000000000000000000000000000000000000000000000000000000000"
  },
  "forward_to": "0000000000000000000000000000000000000000000000000000000000000000"
}

For detailed information about each field please refer to BOLT 04 of the specification, the following is just a brief summary:

  • onion:
    • payload contains the unparsed payload that was sent to us from the sender of the payment.
    • short_channel_id determines the channel that the sender is hinting should be used next. Not present if we're the final destination.
    • forward_amount is the amount we should be forwarding to the next hop, and should match the incoming funds in case we are the recipient.
    • outgoing_cltv_value determines what the CLTV value for the HTLC that we forward to the next hop should be.
    • total_msat specifies the total amount to pay, if present.
    • payment_secret specifies the payment secret (which the payer should have obtained from the invoice), if present.
    • next_onion is the fully processed onion that we should be sending to the next hop as part of the outgoing HTLC. Processed in this case means that we took the incoming onion, decrypted it, extracted the payload destined for us, and serialised the resulting onion again.
    • shared_secret is the shared secret we used to decrypt the incoming onion. It is shared with the sender that constructed the onion.
  • htlc:
    • short_channel_id is the channel this payment is coming from.
    • id is the low-level sequential HTLC id integer as sent by the channel peer.
    • amount is the amount that we received with the HTLC. This amount minus the forward_amount is the fee that will stay with us.
    • cltv_expiry determines when the HTLC reverts back to the sender. cltv_expiry minus outgoing_cltv_expiry should be equal or larger than our cltv_delta setting.
    • cltv_expiry_relative hints how much time we still have to claim the HTLC. It is the cltv_expiry minus the current blockheight and is passed along mainly to avoid the plugin having to look up the current blockheight.
    • payment_hash is the hash whose payment_preimage will unlock the funds and allow us to claim the HTLC.
  • forward_to: if set, the channel_id we intend to forward this to (will not be present if the short_channel_id was invalid or we were the final destination).

The hook response must have one of the following formats:

{
  "result": "continue"
}

This means that the plugin does not want to do anything special and lightningd should continue processing it normally, i.e., resolve the payment if we're the recipient, or attempt to forward it otherwise. Notice that the usual checks such as sufficient fees and CLTV deltas are still enforced.

It can also replace the onion.payload by specifying a payload in the response. Note that this is always a TLV-style payload, so unlike onion.payload there is no length prefix (and it must be at least 4 hex digits long). This will be re-parsed; it's useful for removing onion fields which a plugin doesn't want lightningd to consider.

It can also specify forward_to in the response, replacing the destination. This usually only makes sense if it wants to choose an alternate channel to the same next peer, but is useful if the payload is also replaced.

{
  "result": "fail",
  "failure_message": "2002"
}

fail will tell lightningd to fail the HTLC with a given hex-encoded failure_message (please refer to the spec for details: incorrect_or_unknown_payment_details is the most common).

{
  "result": "fail",
  "failure_onion": "[serialized error packet]"
}

Instead of failure_message the response can contain a hex-encoded failure_onion that will be used instead (please refer to the spec for details). This can be used, for example, if you're writing a bridge between two Lightning Networks. Note that lightningd will apply the obfuscation step to the value returned here with its own shared secret (and key type ammag) before returning it to the previous hop.

{
  "result": "resolve",
  "payment_key": "0000000000000000000000000000000000000000000000000000000000000000"
}

resolve instructs lightningd to claim the HTLC by providing the preimage matching the payment_hash presented in the call. Notice that the plugin must ensure that the payment_key really matches the payment_hash since lightningd will not check and the wrong value could result in the channel being closed.

🚧

lightningd will replay the HTLCs for which it doesn't have a final verdict during startup. This means that, if the plugin response wasn't processed before the HTLC was forwarded, failed, or resolved, then the plugin may see the same HTLC again during startup. It is therefore paramount that the plugin is idempotent if it talks to an external system.

The htlc_accepted hook is a chained hook, i.e., multiple plugins can register it, and they will be called in the order they were registered in until the first plugin return a result that is not {"result": "continue"}, after which the event is considered to be handled. After the event has been handled the remaining plugins will be skipped.

rpc_command

The rpc_command hook allows a plugin to take over any RPC command. It sends the received JSON-RPC request (for any method!) to the registered plugin,

{
    "rpc_command": {
        "id": 3,
        "method": "method_name",
        "params": {
            "param_1": [],
            "param_2": {},
            "param_n": "",
        }
    }
}

which can in turn:

Let lightningd execute the command with

{
    "result" : "continue"
}

Replace the request made to lightningd:

{
    "replace": {
        "id": 3,
        "method": "method_name",
        "params": {
            "param_1": [],
            "param_2": {},
            "param_n": "",
        }
    }
}

Return a custom response to the request sender:

{
    "return": {
        "result": {
        }
    }
}

Return a custom error to the request sender:

{
    "return": {
        "error": {
        }
    }
}

Note: The rpc_command hook is chainable. If two or more plugins try to replace/result/error the same method, only the first plugin in the chain will be respected. Others will be ignored and a warning will be logged.

custommsg

The custommsg plugin hook is the receiving counterpart to the sendcustommsg RPC method and allows plugins to handle messages that are not handled internally. The goal of these two components is to allow the implementation of custom protocols or prototypes on top of a Core Lightning node, without having to change the node's implementation itself.

The payload for a call follows this format:

{
	"peer_id": "02df5ffe895c778e10f7742a6c5b8a0cefbe9465df58b92fadeb883752c8107c8f",
	"payload": "1337ffffffff"
}

This payload would have been sent by the peer with the node_id matching peer_id, and the message has type 0x1337 and contents ffffffff. Notice that the messages are currently limited to odd-numbered types and must not match a type that is handled internally by Core Lightning. These limitations are in place in order to avoid conflicts with the internal state tracking, and avoiding disconnections or channel closures, since odd-numbered message can be
ignored by nodes (see "it's ok to be odd" in the specification for details). The plugin must implement the parsing of the message, including the type prefix, since Core Lightning does not know how to parse the message.

Because this is a chained hook, the daemon expects the result to be {'result': 'continue'}. It will fail if something else is returned.

onion_message_recv and onion_message_recv_secret

These two hooks are almost identical, in that they are called when an onion message is received.

onion_message_recv is used for unsolicited messages (where the source knows that it is sending to this node), and onion_message_recv_secret is used for messages which use a blinded path we supplied. The latter hook will have a pathsecret field, the former never will.

These hooks are separate, because replies MUST be ignored unless they use the correct path (i.e. onion_message_recv_secret, with the expected pathsecret). This avoids the source trying to probe for responses without using the designated delivery path.

The payload for a call follows this format:

{
  "onion_message": {
    "pathsecret": "0000000000000000000000000000000000000000000000000000000000000000",
    "reply_blindedpath": {
      "first_node_id": "02df5ffe895c778e10f7742a6c5b8a0cefbe9465df58b92fadeb883752c8107c8f",
      "first_scid": "100x200x300",
      "first_scid_dir": 1,
      "blinding": "02df5ffe895c778e10f7742a6c5b8a0cefbe9465df58b92fadeb883752c8107c8f",
      "hops": [
        {
          "blinded_node_id": "02df5ffe895c778e10f7742a6c5b8a0cefbe9465df58b92fadeb883752c8107c8f",
          "encrypted_recipient_data": "0a020d0d"
        }
      ]
	},
    "invoice_request": "0a020d0d",
    "invoice": "0a020d0d",
    "invoice_error": "0a020d0d",
    "unknown_fields": [
      {
        "number": 12345,
        "value": "0a020d0d"
      }
    ]
  }
}

All fields shown here are optional: in particular, only one of "first_node_id" or the pair "first_scid" and "first_scid_dir" is present.

We suggest just returning {"result": "continue"}; any other result will cause the message not to be handed to any other hooks.


Core Lightning (previously c-lightning) is a lightweight, highly customizable and standard compliant implementation of the Lightning Network protocol.

© 2023 Core Lightning
All rights reserved.

Discussion Forum

The official Core Lightning forum is hosted at discuss.corelightning.org

BuildonL2 Community

The official BuildOnL2 community lives at community.corelightning.org. Join us and build the future of bitcoin on lightning.

Mailing List

For general discussions about CLN implementation, use [email protected]. For the Lightning Network, use [email protected]

Telegram

Community-driven telegram group where most of the node operators hang out. Go to https://t.me/lightningd to join.

Discord

Community-driven discord server where the devs flock together. Go to https://discord.gg/w27fMFESMN to join.

Internet Relay Chat

Don't hesitate to reach out to us on IRC at #lightning-dev @ libera.chat, #c-lightning @ libera.chat.